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We report the results of an experimental study of a colloid fluid confined to a quasi-one-dimensional �q1D�
ribbon channel as a function of channel width and colloid density. Our findings confirm the principal predic-
tions of previous theoretical studies of such systems. These are �1� that the density distribution of the liquid
transverse to the ribbon channel exhibits stratification; �2� that even at the highest density the order along the
strata, as measured by the longitudinal pair correlation function, is characteristic of a liquid; and �3� the q1D
pair correlation functions in different strata exhibit anisotropic behavior resembling that found in a Monte
Carlo simulation for the in-plane pair correlation function of a hard sphere fluid in a planar slit.
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I. INTRODUCTION

Interest in the equilibrium and transport properties of con-
fined dense fluids has grown considerably in the last two
decades. This interest has been driven in part by fundamental
questions concerning the influence of dimensionality on the
properties of a dense fluid and in part by the practical appli-
cations of confined fluids. The majority of the theoretical and
experimental studies have confined attention to either quasi-
one-dimensional �q1D� or quasi-two-dimensional �q2D� sys-
tems. This paper is concerned with systems that are, in a
sense, intermediate between q1D and q2D. We report the
results of an experimental study of the changes in the equi-
librium structure of a colloid fluid that accompany the first
stage of transition from q1D to q2D confinement, specifically
the structure of q1D ribbons as a function of ribbon width.

There are a variety of structures associated with a con-
fined fluid and these structures are dependent on the geom-
etry of the confinement. It has been known for some time
that a three-dimensional �3D� hard sphere fluid in contact
with a smooth hard wall has a density distribution along the
normal to the wall that is stratified over a distance of several
hard sphere diameters �1–4�. The length scale for the strati-
fication depends on the liquid density and can include many
layers in the high-density limit �5�. Recent experimental
studies of confinement-induced layering in q1D systems fo-
cused on particles interacting via a screened Coulomb poten-
tial �6�, quasi-2D dusty-plasma liquids �7� and repulsive
magnetorheological colloids in two-dimensional channels
�8,9�. These systems all have only purely repulsive pair in-
teractions.

When a hard sphere liquid is confined to a q2D geometry
by parallel walls only a few hard sphere diameters apart,
thereby forming a slit, the density distributions that are gen-
erated at each liquid-wall interface overlap and interfere. As
expected from the one-wall-liquid interface structure, the

predicted density distribution of the liquid along the normal
to the parallel walls is stratified �10� with, depending on the
wall separation, the locations and amplitudes of the peaks in
density somewhat different from those in the isolated one-
wall-liquid interface. Moreover, a q2D system confined by
parallel smooth planar walls supports many different ordered
solids, the equilibrium structures of which depend on the
wall spacing �11�. Specifically, the system supports the tran-
sitions fluid→1�→2�→2�→ . . ., where the symbol �
represents triangular �hexagonal� packing, � represents
square packing and the numerical label is the number of
layers. Alternation of square and triangular packing in the
ordered solid persists for at least five layers. As to the liquid
side of the transition line, a recent study has shown that, at
any particular wall separation, there are ordered fluctuations
in the liquid that anticipate the structure to which the q2D
liquid freezes �12�.

In a q1D ribbon system fluctuations destroy all possible
order not imposed by the explicit symmetry breaking associ-
ated with the boundary conditions. The smooth walls that
define a q1D ribbon channel break continuous rotational
symmetry but support rotations by ��, and permit density
modulation along the normal to the walls �9�. The length
scale for the modulation depends on the liquid density and
can include many layers in the high-density limit; the num-
ber of strata is dependent on the ribbon width. Simulations of
hard spheres constrained to have q1D ribbon geometry con-
firm that even at very high density, and despite the existence
of well-defined layering, the translational order in the system
parallel to the walls resembles that of a liquid �13�.

The results reported in this paper extend previous studies
from this laboratory �14,15�. Specifically, we report experi-
mental studies of the structure of a colloid suspension con-
fined to have a q1D ribbon geometry, as a function of ribbon
width, focusing attention on changes in structure accompa-
nying the transition from q1D to q2D confinement. The ques-
tions addressed include the following: �1� what is the nature
of the density distribution transverse to the long axis of the
q1D ribbon channel and how does it change with colloid
density and ribbon width? �2� What is the nature of the pair
correlation function along the long axis of the ribbon channel

*Corresponding authors; s-rice@uchicago.edu;
blin@uchicago.edu

PHYSICAL REVIEW E 79, 031406 �2009�

1539-3755/2009/79�3�/031406�9� ©2009 The American Physical Society031406-1

http://dx.doi.org/10.1103/PhysRevE.79.031406


in the different strata of the colloid liquid and how does it
depend on ribbon width?

II. EXPERIMENTAL DETAILS

Our basic experimental system consists of a sample cell
that contains an aqueous suspension of colloidal silica
spheres confined to a long narrow channel. Because it is very
difficult to load the sample cell with a specified colloid den-
sity, precise replication of any particular sample density is
not commonly achieved. Instead, many cells were used to
generate samples with colloid densities close to the target
density. Overall verification of the observations was gener-
ated by comparison of samples with similar but not identical
colloid densities.

The channels we used were printed on a polydimethysi-
loxane substrate from a master pattern fabricated lithographi-
cally on a silicon wafer �Stanford Nanofabrication Facility,
Stanford, Calif.�. To prepare the sample cell a drop of colloid
suspension was enclosed between the polymer mold and a
cover slip with a polymer spacer ��100 �m�, so that the top
of the groove was open to a layer of fluid. The cover slip,
supported on spacers, limits the rate of evaporation of the
sample. The colloid particles settle gravitationally and fill the
channel to an extent dependent on the bulk colloid suspen-
sion density. Previous studies in this laboratory have shown
that the vertical motion of the colloid particles in the channel
is very small �16�. Other studies �14� that use the same
sample of colloid particles establish that the small residual
charge on the colloid particles does not make a measurable
contribution to the colloid-colloid effective interaction �it is
independent of the ionic strength of the supporting fluid�.

Figure 1 displays a schematic of the experimental setup.
Digital video microscopy was used to extract time-dependent
two-dimensional trajectories of the colloid particles �time
resolution 0.033 s�. We studied samples with fixed values of
the colloid diameter � and channel depth h for different
channel widths w and colloid packing fraction. Further de-
tails of sample preparation and data analysis have been de-
scribed elsewhere �14�.

We have used two different samples of colloid particles.
In one set of experiments the particle diameter was �
=1.58�0.04 �m �density 2.2 g /cm3, Duke Scientific, Fre-
mont, Calif.�, the channel depth was 3�0.2 �m, and each
sample was examined over a field of view of 108 �m diam-
eter within a 2-mm-long channel. Because of the extension
of the channel beyond the field of view examined these
samples can be treated as having open channel ends. The
channel is also open to particle exchange with the bulk su-
pernatant fluid. We found that the 1.58 �m spheres could
not fill the channel with a packing fraction greater than 0.5.
To generate samples with packing fractions greater then 0.5
we used 3.01 �m spheres �density 1.960 g /cm3, Bangs
Laboratories, Fishers, Ind.� in channels with widths that du-
plicate the ratios w /� of the experiments with the 1.58 �m
colloids �see Table I�. Figure 2 displays some snapshots of
instantaneous particle configurations for our ribbon channel
systems. The number of particles inside the field of view
varied from 23 to 450 per image dependent on the colloid
packing fraction and channel width. We used the sphere cen-
ter determination technique described by Crocker and Grier
�17� to create histograms of the experimental data and to plot
the trajectories of individual colloid particles, examples of
which are provided in Fig. 3. The influence of an optical
artifact arising from overlap of particle images on the in-
ferred effective colloid-colloid interaction is discussed in the
Appendix to this paper.

We note that at equilibrium the nonuniform distribution of
colloid particles in the channel has uniform chemical poten-
tial equal to that of the bulk colloid suspension, by virtue of
the possibility for exchange of particles between the channel
and the supernatant suspension, and that the gravitational
contribution to the chemical potential is sufficiently large
that the supernatant suspension is dilute. It is the difference
in the gravitational contributions to the chemical potentials
of the two colloids with different diameters �and masses� that
permits generation of larger packing fraction with the larger
particle.

FIG. 1. Schematic diagram of the experimental system.

TABLE I. Channel widths; w refers to the width of the grooves
on the master mold and weff to the effective width calculated as
described in the text. For higher packing fractions, ��0.7, � is also
calculated �note that the value of �=3.2 �m, determined from the
position of the first peak in pair-distribution functions, is used in
calculating ��.

�
��m�

w
��m�

weff

��m� weff /� �

1.58 5.0 3.1 2.0

1.58 8.0 5.7 3.6

1.58 11.0 8.9 5.6

1.58 14.0 11.6 7.4

1.58 20.0 17.7 11.3

3.01�0.2 8.0�0.1 6.2�0.2 2.1�0.2 2.1�0.1

3.01�0.2 14.0�0.1 11.4�0.2 3.8�0.3 3.9�0.3

3.01�0.2 20.0�0.1 17.6�0.2 5.8�0.4 6.1�0.4

3.01�0.2 25.0�0.1 22.5�0.2 7.4�0.5 7.9�0.6
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From histograms of the particle locations we verified that
the particle density distributions in all of our samples were
uniform along the channel axis �the x axis�. This observation
permits us to infer that there are no ripples or other structures
in the channel walls that would induce order in the liquid
parallel to the walls or contribute to an apparent colloid-
colloid interaction. Examination of our images reveals that
the extent of particle displacement transverse to the channel
�the y direction� is less than expected from the channel width
and the absence of direct colloid-wall interaction other than
excluded volume �14�. We attribute the enhanced confine-
ment of a colloid particle in the y direction to the nonwetting
of the silicone elastomer wall by the aqueous colloid suspen-
sion, which creates a gap between the surface of the liquid
and the channel wall. The effective width of the channels is

reduced by approximately 1 �m along each wall largely ir-
respective of w but dependent on �. The effective width of
the channel was calculated by generating the colloid density
distribution transverse to the channel from a histogram of the
colloid particle positions, and measurement of the distance
between the most widely separated density peak centers; the
effective channel width, weff, is this peak separation plus one
particle diameter, �; hence the precision for weff is the same
as that of the particle diameters. However, for clarity, we will
refer to experimental data sets by the relevant fabricated
channel width, i.e., “the 5 �m channel” as opposed to “the
3.1 �m channel.” The packing fraction was calculated from
the effective width using �=N��� /2�2 / lweff, where l is the
length of the channel section in the field of view �l

(a)

(b)

FIG. 2. �a� Images of different q1D ribbon systems, all with
colloid diameter 1.58 �m: �a� w=5 �m, �=0.185; �b� w=8 �m,
�=0.260; �c� w=11 �m, �=0.395; �d� w=14 �m, �=0.440; �e�
w=20 �m, �=0.322. The widths listed correspond to the master
mold without any adjustment for effect of nonwetting of the walls
by the aqueous colloid suspension. �b� Images of different q1D
ribbon systems, all with colloid diameter 3.01 �m: �a� w=8 �m,
�=0.686; �b� w=14 �m, �=0.692; �c� w=20 �m, �=0.702; �d�
w=25 �m, �=0.697. The widths listed correspond to the master
mold without any adjustment for effect of nonwetting of the walls
by the aqueous colloid suspension.

(b)

(a)

(c)

FIG. 3. Sample trajectory images. From top to bottom: �
=1.58 �m, w=5 �m, �=0.185; �=1.58 �m, w=11 �m, �
=0.395; �=3.01 �m, w=14 �m, �=0.692. Both axes are normal-
ized to measure distance in sphere diameters.
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=108 �m�, and N is the average number of spheres in the
section during the period studied. Because of the way the
cells are filled it is not possible to precisely predetermine the
concentration of colloid particles, so comparisons of data
sets are for comparable but not identical packing fractions.

The pair correlation function of the colloid particles for a
homogeneous q2D system can be calculated from the digital
video microscopy data using

g2�r� = �−1��
i

�
j

��ri���rj − r�	 =
N�r�

2��r
,

in which N�r� is the number of colloid particles located
within �r /2 from the reference particle, �r is the step size of
the histogram plot, and � is the packing fraction of the col-
loid particles. Similarly, g2�x�, the pair correlation function
for a homogenous q1D system, can be calculated from the
above expression, simply replacing r and � with x and 	 �	
is the q1D line packing fraction; 	=N� / l�.

Where appropriate, we have calculated both g2�r� for all
the particles in the channel and g2�x� for each individual
stratum in the transverse density distribution. In the case of
g2�x�, N includes all the particles belonging to the same stra-
tum whose width is determined by the two minima on either
side of the peak �see Figs. 4–6�. In the case of g2�r�, it is
worthwhile to note that, because of the geometry of the rib-
bon channel, the normalization g2�r� is, for any r, defined in
a rectangular domain. By definition, g2�r� is normalized with
respect to the distribution of a pair of randomly placed points
in the same volume/area. Thus, the normalization factor is a
constant defined by the system length in a one-dimensional
system, while for a two-dimensional system the normaliza-

tion factor is proportional to r−1 because the radial domain
area, 2�rdr, increases with increasing r. Rather than deter-
mine an analytic form for the normalization factor in the
rectangular domain, it was determined via a simulation. Be-
cause the actual confinement of the colloid particles is tighter
than the nominal channel width, the effective width of the
channel was determined from the experimental data, from
the minimum and maximum y positions of the particles.
Then a random number generator was used to distribute two
points uniformly in the rectangular area, and a histogram of
pair separations generated. This histogram defines the nor-
malization factor to within a constant.

III. RESULTS

A. Transverse density distribution

The density distribution of the liquid transverse to the
ribbon channel exhibits stratification, and the modulation of
the strata depends on the packing fraction of the liquid and
the width of the channels. Figure 5 displays the transverse
density distributions of 1.58 �m colloid particles with pack-
ing fraction close to 0.41 �the range is 0.406–0.440� in rib-

(b)(a)

(c) (d)

FIG. 4. �Color online� Transverse density distributions of
1.58 �m particles with packing fraction ��0.25 in channels with
various widths: �a� w=5 �m, �b� w=8 �m, and �c� w=14 �m.
Part �d� shows a sample of how the data were selected to compute
g2�x� for Figs. 7–9.

(b)(a)

(c) (d)

(e)

FIG. 5. Transverse density distributions of 1.58 �m particles
with packing fraction ��0.41 in channels with various widths: �a�
w=5 �m, �b� w=8 �m, �c� w=11 �m, �d� w=14 �m, and �e�
w=20 �m.
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bon channels with nominal widths of 5 �m, 8 �m, 11 �m,
14 �m, and 20 �m �the uncertainty of the channel width is
about �0.1 �m�. The ratios of effective channel width to
particle diameter, weff /�, for these cases have the values 2.0,
3.6, 5.7, 7.4, and 11.3 and the data clearly show that the
liquid in the channel is stratified with 2, 3, 5, 6, and 9 layers,
respectively. We note that for this packing fraction bulk liq-
uid conditions are not reached until the channel has more
than six strata. Because the nonwetting condition generates a
softer wall than does hard sphere-hard wall repulsion, the
density peaks adjacent to the walls are not as asymmetric as
predicted from simulation studies of that system �1,5�. The
small asymmetry of the density distribution across the chan-
nel is likely due to very slight variation in the flatness of the
surface of that particular molded channel. As expected, rela-
tive to the system with packing fraction ��0.41 shown in
Fig. 5, the modulation of the transverse density distribution
is smaller and the widths of the strata larger for lower pack-
ing fraction �Fig. 4, ��0.25� and, conversely, the modula-
tion is greater and the strata widths smaller for larger packing
fraction �Fig. 6, ��0.70�.

B. Longitudinal pair correlation functions

The colloid liquids we have studied, confined to q1D rib-
bons that support multiple strata, necessarily have aniso-
tropic pair correlation functions. Therefore, we have only
examined the pair correlations parallel to the walls within
strata.

Figures 7–9 display g2�x� for each of the systems with
transverse density distributions displayed in Figs. 4–6 for
each of the strata in the channel. The g2�x� for the individual
strata have been shifted vertically for clarity. The in-stratum
pair correlation functions of the systems with packing frac-

tions ��0.25 and ��0.41 are unexceptional and show very
weak dependence of the correlation function on layer dis-
tance from the wall despite the differences in stratum densi-
ties. There is just a hint in the shapes of the second peaks of
g2�x� in the 11 �m, 14 �m, and 20 �m channels with
packing fraction ��0.41 of very slightly enhanced longitu-
dinal order in the layers immediately adjacent to the two
walls.

A q2D colloid suspension confined to a planar gap of
order 1.2� freezes at a packing density of about 0.7. How
this freezing density depends on ribbon width, i.e., reduction
in the infinite xy space to a narrow channel, is not known,
but in our high density ribbon samples the density distribu-
tions look ordered, essentially the same along lines that are
parallel to and canted relative to the walls, and hexagonally
isotropic on the scale length of the channel width, as shown
by the images in Fig. 2�b�, and the particle trajectories �lower
panel in Fig. 3�. For these systems we calculated both g2�x�
�Fig. 9� and g2�r� �Fig. 10�, and we take the latter to be
meaningful for r
weff /2, shown in the shaded regions.

The q1D pair correlation functions g2�x� of the systems
show a marked dependence of the peak widths on channel
width; the peaks are narrowest for the 20 �m channel and
widest for the 14 �m channel �Fig. 9�e��, unlike the behav-
ior of the peaks of g2�x� in systems with smaller packing
fractions. This behavior is analogous to that found in the
very high-density regime in simulations of hard spheres con-
fined to ribbon channels by smooth hard walls �18�. In that
regime, if w /� supports an integer number of strata �i.e., a
commensurate configuration� the system packs in a perfect
2D triangular lattice. If such a condition is satisfied, then �,
defined as �
1+2�w−�� /�3�, is an integer �18�.

(b)(a)

(c) (d)

FIG. 6. Transverse density distributions of 3.01 �m particles
with packing fraction ��0.70 in channels with various widths: �a�
w=8 �m, �b� w=14 �m, �c� w=20 �m, and �d� w=25 �m.

(b)(a)

(c)

FIG. 7. �Color online� Pair correlation functions along indi-
vidual strata of 1.58 �m particles with packing fraction ��0.25 in
channels with various widths: �a� w=5 �m, �b� w=8 �m, �c� w
=14 �m, corresponding to density profiles in Fig. 4. For each stra-
tum, g2�x� was shifted vertically for clarity, with the topmost graph
corresponding to the leftmost stratum in density distribution.
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As shown in Table I, the nominal � values for our high-
density systems are all close to an integer, yet the uncertainty
introduced from the particle diameter makes it unrealistic to
determine whether the width of the peaks in g2�x� is associ-
ated with the closeness of � to an integer. However, this
lattice has zero shear modulus, hence can flow like a liquid
parallel to the walls. If there is a little extra space between
the walls, and w /� supports somewhat more than an integer
number of strata, there is a buckling instability in the y di-
rection, the system breaks into many triangular solid regions
that are displaced in the x direction, and the overall effect is
an increase in the average widths of the strata.

At packing fraction ��0.7, even though the peaks of
g2�x� are narrow and not overlapping, they decay with in-
creasing x, clearly indicating that the order is that of a liquid
�13�. On the other hand, the pair correlation function g2�r�
shown in the shaded regions in Fig. 10 closely resembles that
of a q2D colloid crystal at a similar packing fraction �15�.
The differences arise from the inclusion of interstratum pair
separations in g2�r� that are obviously not contained in g2�x�.

We note that the first peaks of g2�x� are not located at x
=�, even though the silica spheres used are essentially
charge neutral. There are likely two dominant contributions
to this shift, polydispersity of particle size and a weak attrac-
tion between colloid particles. Although the nominal polydis-
persity specified by the manufacturer is 3%, the apparent
polydispersity is much higher �see Fig. 2�a��, and the effect
of the polydispersity on g2�x� is to shift the first peak to
larger x �19�. In addition, we have shown previously that the
confined colloid suspensions we have studied, which do not
wet the walls, behave as if there is an effective weak colloid-
colloid attraction �see the Appendix for further discussion of
the optical artifact correction for the confinement-induced
effective pair potential�.

C. Phase shift in the stratified longitudinal
pair distribution function

A more interesting and striking density dependence of
g2�x� is found when one compares this function in slices

(b)(a)

(c) (d)

(e)

FIG. 8. �Color online� Pair correlation functions along indi-
vidual strata of 1.58 �m particles with packing fraction ��0.41 in
channels with various widths: �a� w=5 �m, �b� w=8 �m, �c� w
=11 �m, �d� w=14 �m, and �e� w=20 �m, corresponding to den-
sity profiles in Fig. 5. For each stratum, g2�x� was shifted vertically
for clarity, with the topmost graph corresponding to the leftmost
stratum in density distribution.

(b)(a)

(c) (d)

(e)

FIG. 9. �Color online� Pair correlation functions along indi-
vidual strata of 3.01 �m particles with packing fraction ��0.70 in
channels with various widths: �a� w=8 �m, �b� w=14 �m, �c� w
=20 �m, �d� w=25 �m, corresponding to density profiles in Fig.
6. For each stratum, g2�x� was shifted vertically for clarity, with the
topmost graph corresponding to the leftmost stratum in density dis-
tribution. Part �e� compares peak widths for the first stratum.
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taken at the maxima and minima of the transverse density
distribution. We show the results of this comparison in Fig.
11. Consider the peak of the density stratum adjacent to a
wall and the minimum between that stratum and the next
stratum. The first peaks of g2�x� for the slices through the
density maximum of the first stratum and through the mini-
mum between the first two strata have the same location, but
the data reveal a phase shift in the locations of the second
peaks of g2�x�. A smaller phase shift is found between these
peaks of g2�x� for slices through the maximum density of the
second stratum and through the minimum in density between
the second and third strata. This phase shift resembles that
found by Kjellander and Sarman �20� for the same slices of
the in-plane pair correlation function of a hard sphere fluid in
a planar slit with hard walls with separations 2.1� and 15.2�
Indeed, the magnitude of the shift, 0.2�, is the same as that
found from the simulation.

IV. DISCUSSION

Overall, our experimental results illustrate how the prop-
erties of a fluid confined to a q1D ribbon channel are deter-
mined by the competition between fluctuations that prevent
ordering and the ordering that would be generated by the
most favorable exploitation of the free volume of the system.
Specifically, our experimental studies confirm the predictions
of the three principal properties of colloid liquids confined to
occupy a q1D ribbon that follow from that competition.
These are �1� that the density distribution of the liquid trans-
verse to the ribbon channel exhibits stratification; �2� that
even at the highest density the order along the strata, as
measured by the longitudinal pair correlation function, is

characteristic of a liquid; and �3� that the q1D pair correla-
tion function in different strata exhibits anisotropic behavior,
resembling that found in a Monte Carlo simulation of the
in-plane pair correlation function of a hard sphere fluid in a
planar slit �20�.

The phase shift between the longitudinal pair correlations
in slices containing the density maximum of the first stratum
and the density minimum between the first two strata of a
hard sphere fluid contained between smooth hard walls is

(b)(a)

(c) (d)

FIG. 10. �Color online� Pair correlation functions, g2�r�, of
3.01 �m particles with packing fraction ��0.70 in channels with
various widths: �a� w=8 �m, �b� w=14 �m, �c� w=20 �m, and
�d� w=25 �m. The shaded regions indicate r
weff /2, where g2�r�
is taken to be meaningful.

(b)

(a)

FIG. 11. �Color online� �a� Slices of the transverse density dis-
tribution function in which g2�x� of Fig. 11�b� was computed. Width
of each slice is 0.5�. �b� Longitudinal pair correlation functions
g2�x� at various positions along the transverse density distribution.
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correctly predicted using an anisotropic version of the
Percus-Yevick integral equation. Kjellander and Sarman �20�
interpret this structural feature as a consequence of the stron-
ger competition for free volume between a particle in the
interstratum space and those in the adjacent dense strata than
between particles in the interstratum space. This interpreta-
tion is not consistent with the lack of phase shift between the
longitudinal pair correlations in slices containing the density
maximum of, say, the third stratum and the density minimum
between the third and fourth strata �see Fig. 11�b��.

The observed independence of density of the longitudinal
pair correlation function across the internal strata of the den-
sity distribution is like that found for the stratified liquid-
vapor interface of a metal, for example Cs. Harris and Rice
�21� showed that this behavior may be understood using the
Fisher-Methfessel �FM� formulation of the local-density ap-
proximation. Fisher and Methfessel �22� introduced the as-
sumption that the pair correlation function of a 3D inhomo-
geneous fluid of hard spheres can be approximated by the
pair correlation function of a homogeneous hard sphere fluid
at a nominal density defined by averaging the point density
over a sphere with diameter equal to the hard sphere diam-
eter and centered at the point of contact of the particles. This
conceptual picture can be extended to the q2D and q1D cases
with obvious definitions of the domain over which the aver-
aging is to be carried out. The FM approximation has the
effect of keeping the lowest order representation of the force
necessary to maintain the density inhomogeneity in the liq-
uid, unlike the conventional local-density approximation that
completely neglects that force.

Examination of the density distribution shown in Fig.
11�a� shows that the average density defined by the FM pro-
cedure appropriate to the geometry varies relatively little
across the space occupied by the interior strata, hence so will
the longitudinal pair correlation function. We suggest that the
observed phase shift between the longitudinal pair correla-
tions in slices containing the density maximum of the first

stratum and the density minimum between the first two strata
is a consequence of different amplitudes of motion perpen-
dicular to the walls of the particles in the stratum adjacent to
the wall and the next stratum �see Fig. 3 middle panel�,
which generates an anisotropic environment for any particles
in the density minimum region.
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APPENDIX

As reported in earlier work, we have found that in q1D
and q2D colloid suspensions that do not wet the confining
walls there is an effective colloid-colloid interaction with
weak attractive well. In this appendix we address the sugges-
tion, originally raised by Bechinger and co-workers �23,24�
and later also considered by several research groups, that an
optical artifact arising from the overlap of the images of

FIG. 12. A snapshot of q1D colloid liquid at a q1D packing
fraction 	=0.18 used for image correction.

FIG. 13. Relation between the difference �x= x̃−x and the real
separation x.

FIG. 14. �Color online� Pair correlation function before and af-
ter correction.

FIG. 15. �Color online� Effective pair-interaction potential be-
fore and after correction.
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colloid particles with small separation generates an error in
the measurements of the separation of the particles that re-
sults in fictitious features in the pair-interaction potential.
Specifically, they identified a systematic deviation between
the digitized �or apparent� particle separation, r̃, and the real
one, r �r̃
r� when particles are close to contact, caused by
optical image overlap. To ascertain the influence of this arti-
fact on the inference that in the q1D systems we have studied
there is an effective colloid-colloid interaction with weak
attractive well, we have revisited our data analysis for the
q1D colloid liquid and explicitly accounted for the artifact
correction.

Several schemes for the correction of the referred to im-
age distortion have been proposed and applied to remove the
error in the calculation of particle pair-interaction potential.
We chose to use one of the methods introduced by Polin et
al. �25� that allows us to correct the artifact retrospectively
with the imaging data used previously to calculate the pair
potential. Briefly, one first identifies a sphere in an image in
which all particles are very well separated from each other,
so there can be no image overlaps. Then the image of such a
sphere is cropped and a two-sphere image is constructed by
duplicating the cropped image a designated distance r away
from the original �cropped� image; this process is repeated
for variable r. The apparent separation, r̃, between the two

spheres in the constructed image is determined using the
standard method �17�. Finally, the difference between the
apparent separation and the real separation, �r= r̃−r, is used
to obtain the undistorted pair distribution function, g2�r�,
from the distorted pair distribution function, g2�r̃�, with the
relation g2�r�dr=g2�r̃�dr̃, which can be approximated to
g2�r�=g2�r+�r��1+ �d / dr ��r� at low density �Eq. �4� in
�25��.

Figure 12 shows a snapshot of our q1D colloid liquid at a
q1D packing fraction 	=0.18. The sphere in the middle of
the group was selected to construct the two-sphere composite
and 100 frames of such images were used to assess the im-
portance of the optical artifact correction. Figure 13 shows
the relation between the difference �x= x̃−x and the real
separation x. The pair correlation function and effective pair-
interaction potential, before and after the correction, are plot-
ted in Figs. 14 and 15. Clearly the correction process has
resulted in the removal of some seemingly nonphysical fea-
tures in the g2�x̃� at this density, such as the excessive sharp-
ness of the first peak and the lack of the first minimum. The
effect of the corrections is to slightly shift the repulsive part
of the interaction potential to smaller x, but the depth of the
attractive well is not significantly changed within the experi-
mental precision �the oscillations in the data curve�.
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